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Abstract

Recently,ithas beenshown thatDirac'sbispinorequationcan be expressed,inan equivalent

tensorform,asa constrainedYang-MiUs equation"inthe limitofan infinitelylargecouplingcon-

stant.Itwas alsoshown thatthefreetensorDiracequationisacompletelyintegrableHamiltonian

system with Lie algebratypePoissonbrackets,from which Fermi quantizationcan be derived

directlywithoutusingbispinors.In thispaperwe investigatethe Yang-Millsequationfora finite

couplingconstant.We show thatthenonlinearYang-Millsequationhasexactplanewave solutions

inone-to-onecorrespondencewiththeplanewave solutionsofDirac'sbispinorequation.We apply

thetheoryofnonlineardispersivewaves toestablishtheexistenceofwave packets.We investigate

theCPT violationofthesenonlinearwave packets,whichcouldleadtonew observableeffectscon-

sistentwithcurrentexperimentalbounds.

1 Introduction

In a recent paper [1] it was shown that square-integrable positive energy bispinor fields in a Minkowski space-

time cannot be physically distinguished from constrained tensor fields. It was also shown [1], [2] that the free

tensor Dirac equation is a completely integrable Hamiltonian system with (non-canonical) Lie algebra type

Poisson brackets, from which Fermi quantization can be derived directly without using bispinors.

Also, it was shown [1] that the tensor Dirac Lagrangian may be derived from the following Yang-Mills

Lagrangian for SL(2,C) × U(1) gauge potentials Aux and complex scalar field p:

1

L =-Z Re [AMA_] + _ (D=_)- V(Ipl=) (I)

where a =p + c where c is a constant, and V - V( IP l 2) is a smooth (at least twice ditferentiable) function of

Ip[ 2. The gauge potentials Aaz satisfy the orthogonal constraint:

AK Axis - -Ipl 2 gap (2)

where g_ is the metric tensor. More detailed discussion of formulas (1) and (2) is given in Section 2. With the
further condition:

Lira g-2 V - _[ p I* (3)
g--.=
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L _ z

where gis the Yang-Mills coupling constant,and settingc == 2m./g where m. is the fermion mass, then

the Dirac Lagrangian equalsthe Yang-MiUs Lagrangian (I) inthe limitthat the coupling constant g tends to

infinity.

The factthatthe freeDirac equation isa constrainedYang-MiUs equation in the limitof a largecoupling

constant issignificantfor both classicaland quantized theories.The classicialtheory,which we regard as the

firstquantized theory,ischaracterizedby the classicalobservablesgivenby the electriccurrentJ_, the energy-

momentum tensor TaB, and the spin-polarizationtensor S_av.These classicalobservablesare sufficientto

describemany experiments with electronbeams [3].The presentpaper addressestheseclassicalobservables.

In Section 2,we considerthe Lagrangian (I) forthe case of a finitecoupling constant g.We show that for

any smooth self-interactionV(I pl2),the constrainedEuler-Lagrange equationshave exactplane wave solutions

in one-to-one correspondence with the plane wave solutionsof Dirac'sequation.We apply the theory of non-

lineardispersivewaves [4]to establishthe existenceof wave packets.

l 4
For the specialcase V ==_ g21p I we show that:

1

a) The mass, m, of each plane wave isindependent of amplitude and equals_ glcl.

b) The wave packets are identicalwith bispinorwave packets.

c) The wave packets are covariant under the CPT operation (defined in Section 3).

!

When V _ _ g2 If) t', the properties (a), (b), and (c) are all violated. However, we show in Section 3 that

these violations could lead to new experimental observations consistent with present bounds for CPT viola-

tions. .

2 Plane Waves and Wave Packets

In [I]we showed that Dirac'sbispinorLagrangian equalsthe Yang-MiUs Lagrsngian (1)in the limitof an infi-
z

nitely large coupling constant g. In the remainder of this paper we will investigate the possibly observable

effects of a finite coupling g. _ -o _ _

First, we show in this section that the Euler-Lagranp equations for (1) and (2) have exact plane way e

solutions in one-to-one correspondence with the plane wave solutions of Dirac's equation. For finite coupling g,

and general V, the mass of each plane wave depends on its amplitude given in formula (2) as Ip l. However, for
I 1

the special case in which V - _ g2 Ip 14 we will see that the mass equals the constant _ g I c t, and hence is inde-

pendent ofamplitude. _ ............

Second, we willestablishthe existenceof wave packets using resultsfrom the theory of nonlineardisper-

sivewaves [4].The most significantdeparture from linearityisthe splittingof the group velocityfor finiteg

I 4pand generalV. However, again forthe specialcue in which V -._g2 IP I the velocitysplittingdoes not occur,

and the wave packets are identicalto the bispinorwave packets which am derived from Dirac'sequation.

The Euler-Lagrange equations for (I)and (2)are given by:.

D'Va a + V'p - Re [_] p (4)

where k_ - _._ are the Lagrange multipliers for the constraint (2), where V' denotes the derivative of V with

respect to I pl 2 and where the Yang-MiUs covariant derivatives D v acting on A_ and a are given.by:
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gX',x xk.

D,a- Vr O + ig A_ <t

Again, o = p + c and solutions A K and p of equations (4) are required to satisfy the constraint (2).

Plane wave solutions of equations (4) are defined b_

(5)

AO(x#) - Ao(0)

_"a(X _) =. e2i0_zJ)T _'a(0)

p(X_) = p(0) (6)

where x_ _ R 4 denotes the space-time coordinates, T generates a one-parameter subgroup of SL(2, C) gauge

transformations, and 0(x _) - p_ x _ where p_ _ R 4 denotes the momentum variables. Note that if AK(0) and p(0)

satisfy the orthogonal constraint (2), then the same is true for AK(x #) and p(x #) for all x_ 8 R 4, since in formula

(6), the SL(2, C) gauge transformations generated by T preserve the orthogonal constraint. Note also that

T (_) - i_" X_ a (7)

for some _" ¢ C 3 satisfying _'. _" - 1. (The reader is reminded that SL(2, C) is the complexification of SU(2)

for which we can take _" _ R_.)

On differentiating formula (6) we get using (7):

Vp A_-0

x'. --2p, x x'.
V# p - 0 (8)

Note in formula (8) that the A'a have twice the rotation rata of bispinors, and pm p_ _ m 2 where m is the

mass in Dirac's equation. Suppose that the plane waves (6) satisfy the sam# condition, which are satisfied by

bispinor plane waves, given as follows:

p'_ A ° - 0

p"_, - :i: m Ipl _* (9)

where the positive sign is used for particles And the negative sign for antiparticles. Since p is constant by (8),

formula (9) can be regarded as the initial condition, for the fields A_. Note that formula (9) is consistent with

p_ p_ - m 2, _'" _" - 1, and the constraint (2), and moreover, Pa for particles becomes -Pa for antiparticles.

Conversely, with Pa so defined, formula (9) defines _" and hence the gauge pn.rator T in formulas (6) and (7).

Substituting (8) into the first two equation. (4), using (2), (5), and (9), we get_

AOA o

PI-I
: (2mZ±2mglpl +g_lPl 2)

IPl (10)

Note that _ =, _ and by the constraint (2), _ is reaL (Recall that A_ is red and A'm is complex.)

Now substituting (10) into the last equation (4), we get:
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4m 2- 6 mg ]Pl =" V' + g2 c_ + g2 ([p+c[2_ 21p[2) (11)

Clearly, since all other terms are real, cp is also real. Without loss of generality, we assume that c _ O, hence

p is real. Choosing p >_0 for particle plane waves and p _ 0 for antiparticle plane waves, formula (11) becomes:

' (°-2)
with the obvious solution:

(13)

We see in this case that the mass m -- gc/2 is independent of amplitude.

Wave packets are deRned to be plane waves with slowly changing parameters (e.g., amplitude, spin, and

momentum). To describe such wave packets we introduce "slow" coordinates y¢ -, _x ¢, where _ is a small

parameter, into formula (6) as follows [4]:

_= (X I)) =B e2il-1. 0 (-v_)T _. (_)
.a

p (x_) -p_)

where e (x ¢) -e(8 x¢), etc. The resulting equations governing the wave packet_ [4] are given by:.

(14)

papa _ m 2

Va P_ " V_ Pa

V:J a- 0 (15)

where now pQ - Va e, where m - m(p) is given in formula (12), and

J=-F va, va-pa/m, F-?p2+4pS (16)

To analyze equations (15) we now consider a space-time with one space dimension. Then v_ - (v o, v_) and

the group-vel_c/_y :_-v==--vl/v O. = .... =-

That is,

1

vo - _- V1---__

VlmV 7 (17)
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Similarly,x_ " (t,x).Formula (15)becomes:

o + -_,(Fvy)- 0-_ (Fy)

()6)t(mvT) + _x (my) - 0

The equations for the characteristiccurves for (18)are easilyderived[4],and are given br.

t_ v-!'8

where

(18)

(19)

. r/t- 
s- yFa (20)

where F' and m' denote the derivativesof F and m with respectto p.On the curves (19)we have:

72 dv --± _ dp
(21)

1 4When V - _ g2 f Pl m' =- 0 by formula (13) so that by (21), dv - 0, that is, v is constant on the charac-

teristic curves (19). Since then8 "=0, the curves (19) are straight lines. It is then straightforward to show that

the wave packets are identical to bispinor wave packets.

In general, for wave packets to exist, 8, in formula (20) must be real. If V _ _ g2 IP [4, a general wave packet

will split into two wave packets that propagate along the characteristic curves (19).

3 CPT and Velocity Splitting

By the Caftan map, the CPT operation which, for bispinore, is given by [5]:

becomes for the tensor fields A_ and p:

¥ (xp)-'i75¥ (-*_) (22)

-- (-,P)

p (x_)--"--p (--,P) (23)

Note that because of the constant c, the Yang-MiUs Lagrangian L in formula (1) is not covariant under the

CPT operation (23). Nevertheless in the limiting case that the coupling constant g tends to infinity, the Euler-

Lagrange equations commute with CPT. In this section we examine the question of CPT violation for finite

coupling g.

One of the main tests for CPT covariance is the equality of particle and antiparticle masses [6]. According

to formula (13), when V - ½g2 Ip14 the masses are equal. Therefore, suppose instead that
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V- _ IPl 4 + elpl 4

where e is a small parameter. Then to first order in e, formula (12) gives:

(24)

m-_+_gp (25)

Since p >_0 for particle plane waves and p _ 0 for antiparticle plane waves, the mass difference Am is:

28

Am ,,, _ I p I (26)

On substituting formula (25) into (20), the velocity splitting 28 becomes, to lowest order in e and g-_

(ignoring factors close to one; i.e., ,_):

.E:_
28- _ (27)

Assuming a fractional mass difference for electrons and positrons of one part in a million, the velocity

splitting would be 28 w 10-3 or 3 X 105 meters per second, which should be observable in experiments that

measure the spreading of low energy electron wavepackete. CPT violations of 10-e are consistent with current

observations of particle-antiparticle mass difference and suggest new experiments to observe velocity splittings

of3 × 105 meterspersecond,orless[6].
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